Hardware - разное

       

Super CCD от Fuji


Корпорация Fuji Photo Film Co. Ltd. тоже уже давно идет по пути совершенствования конструкции светочувствительных матриц для цифровых фотокамер, разрабатывая серию сенсоров Super CCD (Charge Coupled Device — прибор с зарядовой связью). Изготовление сенсоров началось в 1999 году, а уже в 2000-м публике были представлены две камеры со светочувствительными матрицами Super CCD первого поколения.

Идея, лежащая в основе технологии Super CCD, напоминает принцип функционирования негативной цветной фотопленки, а еще более — живого глаза, способного различать цвета. Обычная светочувствительная матрица получает информацию о цвете и освещенности точки из одного и того же сенсорного элемента. При съемке с такой матрицей незначительные различия цвета и освещенности в каких-то зонах изображения (самых светлых или затененных, в зависимости от режима съемки) теряются, и на итоговом снимке эти зоны отображаются одним цветом. Фотопленка и живой глаз работают иначе: крупные зерна фотопленки и так называемые клетки-«колбочки» сетчатки реагируют главным образом на различие в цвете. А мелкие зерна фотопленки и клетки-«палочки» лучше различают освещенность.

По этому же принципу работает матрица Super CCD. Чувствительные элементы сгруппированы в ней попарно: большие (S-типа) и маленькие (R-типа). S-элементы из-за своей большой площади при освещении насыщаются быстро, получая информацию о цвете точки. В это же время R-элементы с меньшей площадью насыщаются гораздо медленнее, отчего они лучше определяют освещенность. Чувствительные элементы (фотодиоды) в матрице Super CCD выполнены в форме восьмигранников и располагаются по диагонали, и поверхность матрицы похожа на соты. Воспринимаемые чувствительными элементами (фотодиодами) световые сигналы делятся на горизонтальные и вертикальные составляющие, а затем комбинируются, что позволяет достичь большего разрешения по обеим осям. Кроме того, сотовое расположение светодиодов позволяет разместить их в большем количестве на той же площади.

В результате появляется возможность получить снимок, имеющий в два раза большее разрешение по сравнению с обычным фотодиодом.
Информация с Super CCD- матрицы формируется на основе одного канала яркости и трех каналов, описывающих цвет (RGB). Задача процессора камеры (или специальной компьютерной программы, способной обрабатывать «сырые» данные, получаемые с матрицы в RAW-формате) — скомбинировать сигналы с двух типов сенсоров и получить изображение, одинаково контрастное и детальное во всех областях. Информация, соответствующая «пустой» клетке, высчитывается исходя из знания уровня заряда, накопленного в соседних элементах. К слову, в стандартной фотопленке светочувствительное зерно имеет неодинаковый от слоя к слою размер и характеризуется разным диаметром светочувствительных частиц. Поэтому технология Super CCD лучше учитывает «природные» законы кибернетики, нежели та, что применяется в стандартных CCD-сенсорах.

В результате применения технологии Super CCD стало возможным довольно значительно увеличить динамический диапазон камеры. В свою очередь должно было заметно возрасти и реальное качество передачи деталей высококонтрастных изображений, а от сенсора ожидали хороших результатов по вертикальному и горизонтальному разрешениям, к которым привык человеческий глаз. Новый тип сенсора, разработанный инженерами Fuji, казался им революционным: ведь имея всего 2,4 млн S- и R-элементов, он позволял получать фотографии с 4,3 млн пикселей.

Однако на практике получилось не совсем так, как задумывали инженеры Fuji. Первые камеры с матрицами Super CCD были разрекламированы как «прорыв в технологии цифровой съемки», однако прорыва-то как раз и не получилось. Снимки выходили неплохими, и только, говорить о революции в качестве не приходилось. Что подвело: программное обеспечение камер или аналого-цифровой преобразователь матрицы — неизвестно, но цветопередача и динамический диапазон снимков остались на обычном уровне.

Инженеры Fuji не сдавались, и в 2001 году появилось второе поколение светочувствительных матриц серии Super CCD. Работали они эффективнее, однако улучшения носили тот же характер, что и у «традиционных» конкурентов: повысилась чувствительность, увеличилось разрешение, снизились шумы.


Обещанного расширения динамического диапазона опять не произошло. Специалисты в области цифровой фотографии начали говорить о том, что избранное Fuji технологическое направление ведет в тупик. Упадочные настроения подкрепил выход в 2002 году камер, в которых была применена матрица серии Super CCD третьего поколения. Снимки, сделанные этими фотокамерами, отличались только улучшенной цветопередачей.

В январе 2003 года компания Fuji представила на рынок светочувствительную матрицу серии Super CCD четвертого поколения. Очередная реинкарнация матрицы шла по двум направлениям: HR и SR. Конструктивно светочувствительные элементы в HR- и SR-матрицах между собой не отличались. Различие состояло в обработке и преобразовании сигналов, получаемых с матриц. В устройствах с индексом HR (High Resolution, то есть «высокое разрешение») данные с дополнительных чувствительных элементов использовались для улучшения разрешения камеры, которое достигало в этом режиме 12 млн пикселей. Подобные матрицы Fuji решила устанавливать в камеры для «продвинутых непрофессионалов». Матрицы же с индексом SR предназначались для профессиональных камер и обладали долгожданным расширенным динамическим диапазоном (Super Dynamic Range). Сенсоры Super CCD IV SR устанавливались в зеркальной камере FinePix S3 Pro и в компактной цифровой камере FinePix S20 Pro. Однако в обоих сенсорах — как в Super CCD HR, так и в Super CCD SR — сохранился элемент «вычисления» результирующей картинки, присущий технологии Super CCD.

Четвертое поколение матриц Super CCD развеяло сомнения в эффективности избранной компанией Fuji технологии. Однако и здесь обнаружился подводный камень. Дело в том, что HR-матрицы, разрешение которых заявлено как 12 млн пикселей, не обеспечивают этого разрешения путем простого сложения элементов обоих типов (R и S). Эти матрицы — всего лишь маркетинговый ход фирмы Fuji, направленный на то, чтобы окупить затраты на разработку технологии путем расширения границ ее применимости. С матрицами типа SR все обстоит несколько лучше, так как в них пусть и не в четыре раза, но имеет место расширение динамического диапазона в сравнении с предыдущими моделями.Наилучшие результаты дает съемка такой матрицей в формате RAW с разрешением 6,4 млн пикселей с возможностью последующей обработки фотографий на компьютере и ручной подборки параметров преобразования в TIFF или JPEG.



1/1.7 Zoll Super CCD SR Sensor и 23,0.15,5 мм Super CCD SR Sensor


Содержание раздела